Handout: More Differentiation Practice

Discussions 201, 203 // 2018-10-05

Problem 1. Compute the derivative of $e^{-1 / x}$.
Problem 2. Expand $\frac{d^{2}}{d x^{2}} f(g(x))$.
Problem 3. Compute the derivative of

$$
f(x)=\sin \left(\sqrt{x^{2}+1}+3 x\right)
$$

Problem 4. The supply $S(t)$, demand $D(t)$, and price $P(t)$ for some good are all functions of time. They are related as follows:

$$
\begin{aligned}
D(t) & =100-5 P(t), \\
S(t) & =3 P(t)-20 .
\end{aligned}
$$

How are $D^{\prime}(t)$ and $S^{\prime}(t)$ related?
Problem 5. Compute the derivative of hyperbolic tangent, which is defined as

$$
\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

Problem 6 (Stewart $\$ 3.4 \# 95$). Let n be a positive integer. Prove that

$$
\frac{d}{d x}\left(\sin ^{n}(x) \cos (n x)\right)=n \sin ^{n-1}(x) \cos ((n+1) x) .
$$

Problem 7. Compute

$$
\frac{d^{12}}{d x^{12}}\left[x^{11}+\left(x^{4}+5 x^{3}+6 x+3\right)^{3}+e^{-x}+\sin (2 x)\right]
$$

(Hint: there are effectively four parts to this problem; it may be best to think about them separately.)
Problem 8. Consider the function

$$
f(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(1) Find the derivative $f^{\prime}(x)$. (You calculated $f^{\prime}(0)$ on the previous homework.)
(2) Determine the limit

$$
\lim _{x \rightarrow 0} f^{\prime}(x)
$$

Compare to the value of $f^{\prime}(0)$.
Then answer the following true/false questions.
\qquad : f is defined everywhere.
: f is continuous everywhere.
: f is differentiable everywhere.
: f^{\prime} is defined everywhere.
: f^{\prime} is continuous everywhere.
: f^{\prime} is differentiable everywhere.
Problem 9. Differentiate both sides of the identity

$$
\tan (\arctan (x))=x,
$$

using the chain rule on the left. Use this to find a formula for the derivative of $\arctan (x)$. Does the answer surprise you? Strategies analogous to this one can be used to compute the derivatives of various inverse functions.
Problem 10. It is a fact that the derivative of $\ln x$ is $1 / x$, as you will see in lecture (or as you can check yourself in the manner of the preceding problem). Find a way to use this information to compute the derivative of the function

$$
f(x)=x^{x} .
$$

